lunes, 11 de noviembre de 2013

circunferencias,parábolas y elipses

introducción. 


circunferencia.
La circunferencia es una curva plana y cerrada donde todos sus puntos están a igual distancia del centro.

La circunferencia solo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.

Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales, o los focos coinciden. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como unpolígono regular de infinitos lados, cuya apotema coincide con su radio.

La intersección de un plano con una superficie esférica puede ser: o bien el conjunto vacío (plano exterior); o bien un solo punto (plano tangente); o bien una circunferencia, si el plano secante pasa por el centro , se llama ecuador

La circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica.
Cirklo.svg


parábolas .

En matemáticas, una parábola (del griego παραβολή) es la sección cónica resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a dicha recta. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta llamadadirectriz,  y un punto exterior a ella llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividadsemejante o semejanza.

La parábola aparece en muchas ramas de las ciencias aplicadas debido a que su forma se corresponde con las gráficas de las ecuaciones cuadráticas. Por ejemplo, son parábolas las trayectorias ideales de los cuerpos que se mueven bajo la influencia exclusiva de la gravedad (ver movimiento parabólico y trayectoria balística).







Elipse.
La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos llamados focos es constante.



ElipseAnimada.gif












circunferencia , parábolas y elipses .

Circunferencia.La circunferencia es una curva plana y cerrada donde todos sus puntos están a igual distancia del centro.z
La circunferencia solo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales, o los focos coinciden. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como unpolígono regular de infinitos lados, cuya apotema coincide con su radio.La intersección de un plano con una superficie esférica puede ser: o bien el conjunto vacío (plano exterior); o bien un solo punto (plano tangente); o bien una circunferencia, si el plano secante pasa por el centro , se llama ecuadorLa circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica.Cirklo.svgElementos de la circunferenciaExisten varios puntos, rectas y segmentos, singulares en la circunferencia:

  • Centro, el punto interior equidistante de todos los puntos de la circunferencia;
  • Radio, El radio de una circunferencia es el segmento que une el centro de la circunferencia con un punto cualquiera de la misma. El radio mide la mitad del diámetro.El radio es igual a la longitud de la circunferencia dividida entre 2π.
  • Diámetro, El diámetro de una circunferencia es el segmento que une dos puntos de la circunferencia y pasa por el centro. El diámetro mide el doble del radio. El diámetro es igual a la longitud de la circunferencia dividida entre π;
  • Cuerda, La cuerda es un segmento que une dos puntos de la circunferencia. El diámetro es la cuerda de longitud máxima.
  • Recta secante, Es la línea que corta a la circunferencia en dos puntos;
  • Recta tangente, Es la línea que toca a la circunferencia en un sólo punto;
  • Arco, El arco de la circunferencia es cada una de las partes en que una cuerda divide a la circunferencia. Un arco de circunferencia se denota con el símbolo sobre las letras de los puntos extremos del arco.
  • Semicircunferencia, cada uno de los dos arcos delimitados por los extremos de un diámetro.





Diámetros conjugados.Dos diámetros de una sección cónica se denominan conjugados cuando toda cuerda paralela a uno de ellos es bisecada por el otro. Por ejemplo, dos diámetros de la circunferencia perpendiculares entre sí son mutuamente conjugados. En una elipse dos diámetros son conjugados si y sólo si la tangente a la elipse en el extremo de un diámetro es paralela a la tangente al segundo extremo.Punto interior.Es un punto en el plano de la circunferencia, cuya distancia al centro de la circunferencia es menor que el radio. El conjunto de todos los puntos interiores se llama interior de la circunferencia. Respecto al círculo, nítidamente, se distinguen el interior, el exterior y la frontera, que es precisamente la respectiva circunferencia.La circunferencia y un punto.
  • Exterior a la circunferencia, si la distancia del centro al punto es mayor que la longitud del radio.
  • Perteneciente a la circunferencia, si la distancia del centro al punto es igual a la longitud del radio.
  • Interior a la circunferencia, si la distancia del centro al punto es menor a la longitud del radio.


La circunferencia y la recta.
  • Exterior, si no tienen ningún punto en común con ella y la distancia del centro a la recta es mayor que la longitud del radio.
  • Tangente, si la toca en un punto (el punto de tangencia o tangente) y la distancia del centro a la recta es igual a la longitud del radio. Una recta tangente a una circunferencia es perpendicular al radio que une el punto de tangencia con el centro.
  • Secante, si tiene dos puntos comunes, es decir, si la corta en dos puntos distintos y la distancia del centro a la recta es menor a la longitud del radio.
  • Segmento circular, es el conjunto de puntos de la región circular comprendida entre una cuerda y el arco correspondiente.
Dos circunferencias.
  • Exteriores, si no tienen puntos comunes y la distancia que hay entre sus centros es mayor que la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 1)
  • Tangentes exteriormente, si tienen un punto común y todos los demás puntos de una son exteriores a la otra. La distancia que hay entre sus centros es igual a la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 2)
  • Secantes, si se cortan en dos puntos distintos y la distancia entre sus centros es menor a la suma de sus radios. No importa que tengan igual o distinto radio. Dos circunferencias distintas no pueden cortarse en más de dos puntos. Dos circunferencias son secantes ortogonalmente si el ángulo entre sus tangentes en los dos puntos de contacto es recto. (Figura 3)
  • Tangentes interiormente, si tienen un punto común y todos los demás puntos de una de ellas son interiores a la otra exclusivamente. La distancia que hay entre sus centros es igual al valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra. (Figura 4)
  • Interiores excéntricas, si no tienen ningún punto común y la distancia entre sus centros es mayor que 0 y menor que el valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra.
  • Interiores concéntricas, si tienen el mismo centro (la distancia entre sus centros es 0) y distinto radio. Forman una figura conocida como corona circular o anillo. Una de ellas tiene que tener mayor radio que la otra. (Figura 5)
  • Coincidentes, si tienen el mismo centro y el mismo radio. Si dos circunferencias tienen más de dos puntos comunes, necesariamente son circunferencias coincidentes.

Un punto en el plano puede ser:Una recta, respecto de una circunferencia, puede ser:Dos circunferencias, en función de sus posiciones relativas, se denominan:Circunferências.png
Ángulos en una circunferencia.La amplitud de un ángulo central es igual a la del arco que abarca.La amplitud de un ángulo inscrito en una semi circunferencia equivale a la mayor parte del ángulo exterior que limita dicha base. (Véase: arco capaz.)La amplitud de un ángulo semi-inscrito es la mitad de la del arco que abarca.La amplitud de un ángulo interior es la mitad de la suma de dos medidas: la del arco que abarcan sus lados más la del arco que abarcan sus prolongaciones.Un ángulo, respecto de una circunferencia, pueden ser:Ángulo central, si tiene su vértice en el centro de esta. Sus lados contienen a dos radios.
Ángulo inscrito, si su vértice es un punto de la circunferencia y sus lados contienen dos cuerdas.
Ángulo semi-inscrito, si su vértice es un punto de la circunferencia y sus lados contienen una cuerda y una recta tangente a la circunferencia. El vértice es el punto de tangencia.
Ángulo interior, si su vértice está en el interior de la circunferencia.
Ángulo exterior, si tiene su vértice en el exterior de la circunferencia.

Longitud de la circunferencia. \ell = \pi \cdot 2r La longitud \ell de una circunferencia es:donde  r \, es la longitud del radio.
Pues \pi \, (número pi), por definición, es el cociente entre la longitud de la circunferencia y el diámetro:
 \pi = \frac {\ell}{2r}
Área del círculo delimitado por una circunferencia.El área del círculo delimitado por la circunferencia es: A = \pi \cdot r^2

Ecuaciones de la circunferencia.(x-a)^2 + (y-b)^2 = r^2\,.
x^2 + y^2 = r^2\,.
(x-a)^2 + (y-b)^2=r^2 \,
x^2+y^2+Dx+Ey+F=0 \,
a = -\frac{D}{2}
b = -\frac{E}{2}
r = \sqrt{a^2 + b^2-F}
En un sistema de coordenadas cartesianas x-y, la circunferencia con centro en el punto (ab) y radio r consta de todos los puntos (xy) que satisfacen la ecuaciónCuando el centro está en el origen (0, 0), la ecuación anterior se simplifica al
La circunferencia con centro en el origen y de radio la unidad, es llamada circunferencia goniométrica, circunferencia unidad o circunferencia unitaria.
De la ecuación general de una circunferencia,
se deduce:
resultando:
Si conocemos los puntos extremos de un diámetro: (x_1,y_1), (x_2,y_2)\,,
la ecuación de la circunferencia es:
(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0.\,

Parábola.Propiedades geométricasAunque la definición original de la parábola es la relativa a la sección de un cono recto por un plano paralelo a su directriz, actualmente es más común definir la parábola como un lugar geométrico: es la sección cónica resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a dicha recta. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta llamadadirectriz, y un punto exterior a ella llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividadsemejante o semejanza.La parábola aparece en muchas ramas de las ciencias aplicadas debido a que su forma se corresponde con las gráficas de las ecuaciones cuadráticas. Por ejemplo, son parábolas las trayectorias ideales de los cuerpos que se mueven bajo la influencia exclusiva de la gravedad (ver movimiento parabólico y trayectoria balística).

De esta forma, una vez fija una recta y un punto se puede construir una parábola que los tenga por foco y directriz de acuerdo a la siguiente construcción. Sea T un punto cualquiera de la recta directriz. Se une con el foco dado F y a continuación se traza la mediatriz (o perpendicular por el punto medio) del segmento TF. La intersección de la mediatriz con la perpendicular por T a la directriz da como resultado un punto P que pertenece a la parábola. Repitiendo el proceso para diferentes puntos T se puede aproximar tantos puntos de la parábola como sea necesario.De la construcción anterior se puede probar que la parábola es simétrica respecto a la línea perpendicular a la directriz y que pasa por el foco. Al punto de intersección de la parábola con tal línea (conocida como eje de la parábola) se le conoce como vértice de la parábola y es el punto cuya distancia a la directriz es mínima. La distancia entre el vértice y el foco se conoce como distancia focal o radio focal.


Lado rectoAl segmento de recta comprendido por la parábola, que pasa por el foco y es paralelo a la directriz, se le conoce como lado recto.Siendo DE los extremos del lado recto y TU las respectivas proyecciones sobre la directriz, denotando por W la proyección del foco F sobre la directriz, se observa que FEUW y DFWT son cuadrados, y sus lados miden FW=2FV. Por tanto el segmento DE es igual a 4 veces el segmento FV (la distancia focal).Las tangentes a la parábola que pasan por los extremos del lado recto forman ángulos de 45° con el mismo, consecuencia de que FEUW y DFWT sean cuadrados, junto con la construcción mencionada en la sección anterior. Además, tales tangentes se cortan en la directriz de forma perpendicular, precisamente en el punto de proyección W del foco, propiedades que pueden ser aprovechadas para construir una aproximación geométrica del foco y la directriz cuando éstos son desconocidos.

Semejanza de todas las parábolasDado que la parábola es una sección cónica, también puede describirse como la única sección cónica que tiene excentricidad e=1. La unicidad se refiere a que todas las parábolas son semejantes, es decir, tienen la misma forma, salvo su escala.Desafortunadamente, al estudiar analíticamente las parábolas (basándose en ecuaciones), se suele afirmar erróneamente que los parámetros de la ecuación cambian la forma de la parábola, haciéndola más ancha o estrecha. La verdad es que todas las parábolas tienen la misma forma, pero la escala (zoom) crea la ilusión de que hay parábolas de formas diferentes.
Un argumento geométrico informal es que al ser la directriz una recta infinita, al tomar cualquier punto y efectuar la construcción descrita arriba, se obtiene siempre la misma curva, salvo su escala, que depende de la distancia del punto a la directriz.

Tangentes a la parábolaUn resultado importante en relación a las tangentes de una parábola establece:Aplicaciones prácticasLlamemos F al foco de una parábola, P a un punto cualquiera de la misma y T a la proyección de este sobre la directriz. Sea MP la mediatriz del triángulo FPT, el cual es isósceles por ser iguales las distancias FP y PT, como se ha visto. Luego MP biseca al ángulo FPT, restando verificar si es tangente a la parábola en el punto P.Sea Q otro punto de la parábola y sea U su proyección en la directriz. Puesto que FQ=QU y QU<QT, entonces FQ<QT. Dado que esto es cierto para cualquier otro punto de la parábola, se concluye que toda la parábola está de un mismo lado de MP, y como la desigualdad es estricta, no hay otro punto de la parábola que toque a la recta MP, esto quiere decir que MP es la tangente de la parábola en P.

Una consecuencia de gran importancia es que la tangente refleja los rayos paralelos al eje de la parábola en dirección al foco. Las aplicaciones prácticas son muchas: las antenas satelitales yradiotelescopios aprovechan el principio concentrando señales recibidas desde un emisor lejano en un receptor colocado en la posición del foco.La concentración de la radiación solar en un punto, mediante un reflector parabólico tiene su aplicación en pequeñas cocinas solares y grandes centrales captadoras de energía solar.
Análogamente, una fuente emisora situada en el foco, enviará un haz de rayos paralelos al eje: diversas lámparas y faros tienen espejos con superficies parabólicas reflectantes para poder enviar haces de luz paralelos emanados de una fuente en posición focal. Los rayos convergen o divergen si el emisor se desplaza de la posición focal.


Ecuaciones de la parábola